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Abstract

Over the past few years, Cloud Computing paradigm has gained a lot of importance in both,
academia and industry. Cloud computing has influenced software development to a great extent
by introducing new concepts such as continuous delivery and elasticity [1]. It has given rise to
the term ’DevOps’, by blending the working of developers and operators due to the requirement
of frequent code deployments. The increasing adoption of DevOps has led to the removal of
boundaries between development and operations, thereby providing a production-like staging
environment right from the start of the development phase [2]. Applications running on Cloud
environments generate run-time production data. Making this run-time feedback available to
DevOps in an accessible format to adapt accordingly, is known as Feedback Driven Development
(FDD) [3]

Among the three layers of the Cloud Computing stack namely Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service(PaaS) and Software-as-a-Service(SaaS), ’developers’ are mainly
concerned with the PaaS, which allows them to focus on application development without wor-
rying about the infrastructure details such as hardware, network, operating systems and the
software environment. ’Operators’ are more concerned with the infrastructure layer to monitor
and provide sufficient resource provisioning and capacity planning.

Leveraging the fact that applications are hosted in the cloud, there are several metrics that
can be monitored. Existing cloud monitoring tools can be used to monitor the performance,
app usage, resource usage, and other aspects of the cloud application. Though these tools exist,
the information provided by them is mostly in the form of cumbersome log messages or graphs
showing a wide variety of metrics. It is not usually preferred by the DevOps nor is it efficient
to manually go through and analyze this information to utilize it. Nonetheless, these logs and
graphs can be useful to capture production issues that occur at scale which normally could not
be captured by profilers. Continuous monitoring of metrics from these logs can be utilized to
improve scalability in cloud. It can be realized by monitoring the log data and deriving scaling
decisions whenever necessary.

This Thesis focuses on research about cloud monitoring to design and implement a platform
level auto-scaler. Developers can continue to deploy new features and operators do not have
to manually provision more application instances as the usage goes higher. The auto-scaler
can also be configured to work with customizable metrics or a combination of metrics that is
flexible to be configured. The monitoring information and scaling decisions are used to derive
a correlation model between the metrics collected.
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1 Introduction

Cloud computing has gained rapid growth and importance in the recent years. The fact that
servers are hosted remotely rather than locally has led to the founding of innumerable small
scale businesses. Start-ups no longer require huge server infrastructure to be set-up at their
locations, instead they can use infrastructure provided by cloud providers such as AWS [7].
They just need to pay for the amount of resources that are actually used and this is known as
the pay-per-use model [8]. This significantly reduces the initial setup cost. DevOps is a very
popular term in cloud computing. It refers to a practise that aims at reducing the gap between
developers and operators [2]. Owing to increased amount of run-time information available
immediately to the developers, which was previously available only to the operators, has made
the DevOps approach very popular. Developers can make use of this information to optimize
the code by visualizing run-time behavior, whereas operators can utilize the information to
automate resource provisioning and capacity planning.

This chapter begins with stating the motivation behind this thesis topic, followed by an insight
into the problem statement that this thesis aims to solve, along with a summary of contributions
from this work, and finally describes how the following chapters of this thesis are organized.

1.1 Motivation

Cloud computing has evoked rethinking and reinventing of software engineering. This can be
attributed to new principles and system design to improve flexibility, scalability, and elasticity of-
fered by cloud. Cloud applications are dynamically allocated resources and infrastructure based
on the usage and demand of the application. When the app usage is less, resources consumed
are also reduced and hence cloud consumers pay less depending on the usage. This proves not
only to be elastic but also cost-effective. The elasticity is achieved by continuous monitoring
of several metrics that indicate the demand at the moment, and provisioning the necessary re-
sources to meet the monitored demand. Other cloud offerings include automatic scaling, load
balancing, and integration with other services such as email services, authentication, etc. Dis-
tributed, scalable enterprise-wide applications also mandate the monitoring of metrics that aid
the developers and business analysts to reason the effectiveness of their applications [9].

The metrics that are monitored vary depending on the type of the application and the level
of the cloud computing stack as shown in Figure 1. For instance, the metrics such as memory
consumption, CPU utilization, network bandwidth utilization are considered to be at the Infras-
tructure level, whereas some other metrics such as response times of methods/procedures, the
number of users accessing the application, maximum number of users who can use the applica-
tion simultaneously, etc. are considered to be at the platform level. Sometimes, the application
level metrics depend on other primitive metrics at the infrastructure level and vice-versa.
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With the growing popularity and adoption of cloud based developments, the run time moni-
toring metrics of the applications are easily available through several application performance
monitoring (APM) tools such as Amazon cloudwatch, New Relic, etc [10, 11]. Though a vast
amount of information is made available through APM tools to the DevOps, the effective uti-
lization of this information is still an open question. APM tools do not provide any actionable
insights as feedback to the developers or operators, and hence most of the DevOps do not tend
to use it. However, this run-time monitoring data could be used to provide useful analytic
information such as performance hotspots that take a lot of execution time, and predictive in-
formation such as methods or loops that may become critical, even before the deployment takes
place. This type of analytic and predictive feedback can be provided to the developers in their
IDEs which otherwise may not be explored by the developers. This is because the information
collected by APM tools are huge amounts of log data that are quite tedious for manual inter-
pretation. At the same time, on the cloud operations side, this information can be leveraged
to provide automation of infrastructure provisioning and capacity planning. This technique of
providing useful information from the monitoring data is known as Feedback driven develop-
ment [3]. Using FDD concepts to provide an efficient monitoring and scaling framework at the
platform level to the cloud DevOps is the focus of this Thesis.

1.2 Problem Statement

The cloud computing stack consists of the three layers as shown in Figure 1. The three layers of
the stack coordinate and work with each other. Each of the layers represent a cloud service. The
top layer of the stack can be composed of the services provided by the bottom layer [12]. The
top layer, SaaS, represent cloud applications that can be consumed by end users, whereas the
middle layer, PaaS, represent the software environment/platform from which the cloud applica-
tions can be developed. The cloud infrastructure layer at the bottom provide the fundamental
resources and hardware (computational resources, storage etc.) necessary to create the software
environment and cloud applications [12].

From the software engineering perspective, it is important to note how cloud computing im-
pacts the DevOps (developers and operators). Based on a research conducted, there are two
important issues [13].

• Impact of cloud computing on DevOps: The blending of software development and
operational processes has brought in a new combined responsibility. The cloud DevOps
are obliged to look into the huge amount of run time log data of the cloud applications.
However, performing this manually proves to be extremely tedious and eventually leads to
DevOps overlooking the information, which otherwise could support critical performance
decision making. This imposes a need for automation tools for DevOps.

• Data and tools utilized by DevOps: The data produced by the logs include business
metrics, system information, usage metrics etc. and these information can be mined to
predict performance/monetary implications of the cloud application in advance. Hence,
when the operational metrics are brought closer to the DevOps in an automated manner,
they would be able to improve the performance and cost-effectiveness of the application.
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Figure 1: Cloud computing stack

Unfortunately this issue is currently not addressed and the need for improving existing
DevOps automation tools is evident.

1.3 Contribution

From the above mentioned issues, it is therefore important to monitor relevant information and
provide efficient automated tools to the DevOps for improving several aspects of the cloud ap-
plication such as performance and cost. In this thesis, a new monitoring and scaling framework
is designed and implemented. It leverages monitoring metrics such as response time of requests,
number of incoming requests, CPU utilization, memory and disk utilization. Bruneo et al. [14] de-
fine a framework that monitors the cloud defined by a 3-D cloud monitoring model, where each
of the dimension correspond to the different layers of the cloud computing stack. Considering
these issues, it is certainly important how these cloud monitoring information can be leveraged
to make a useful impact for the cloud developers and operators.

The thesis contributes a new auto-scaling system that can be adapted to any cloud platform.
It proposes a new monitoring system that collects relevant metrics to make important scaling
decisions. Using the collected metrics, the design aims to provide an efficient feedback to the
cloud DevOps. The collected feedback is integrated into the development environment (IDEs)
so that developers are able to utilize the feedback to make their applications better scalable and
highly available [3]. On the other hand, this feedback can also be used to automate config-
uration management and to facilitate dynamic infrastructure provisioning. In this thesis, the
monitoring metrics are aggregated for a sufficient period to make scaling decision. Scaling de-
cisions can depend on a single metric or even a combination of metrics that can be customized
by the cloud application developer.
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The thesis also models the monitored information collected by the moniotring component of
the auto-scaler, to identify a suitable correlation model. The model provides a better under-
standing of the relation between the collected metrics.

1.4 Structure of the thesis

The rest of the thesis is structured into five chapters.

Chapter 2 includes background information and presents the state of the art of topics related
to this thesis: cloud monitoring, auto-scaling, data modeling, and feedback driven development.

Chapter 3 provides an overview of the high-level system design made in this research work.
It proposes a new cloud monitoring and scaling framework for making the cloud applications
scalable. It also provides a design for deriving a correlation model for the monitored metrics.

Chapter 4 explains the implementation of the proposed design on a fine-grained level. In-
teresting implementation details, the tools and technologies used, and the system footprint are
also provided.

Chapter 5 evaluates the implemented system and illustrates the monitoring and scaling of a
sample application. The metrics monitored are modeled and a correlation model is derived as
well.

Finally, chapter 6 concludes the thesis and outlines ideas for future work.
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2 State of the Art

This chapter presents the state of art of topics relevant for this thesis. We explain the proper-
ties of cloud computing such as continuous delivery, scalability, and elasticity. We also discuss the
state of the art concerning the following topics in detail: FDD, cloud monitoring, auto-scaling,
data modeling, and performance analysis using source code history in evolving software.

2.1 Cloud computing basic concepts

In this section, we explain software release cycles in cloud applications. We also brief about
aspects such as scalability and elasticity in cloud.

2.1.1 Continuous delivery in cloud development

If we compare classic software development with that of software development in cloud, we
observe that there has been a huge change in the frequency of software version releases. De-
ployment cycles have been reduced from months to days and sometimes even within a few hours
the next version is released. This process is referred to continuous delivery(CD) in the cloud
computing terms [1]. This is shown in Figure 2.

Most companies make use of CD to roll out new features and evaluate their new ideas in a
controlled manner [15]. CD has become a huge success and companies such as Google, Face-
book etc. adopt CD of varying degrees for some of their services. When a feature is delayed for
the current roll-out, it gets delayed by months in the case of traditional software development.
The feature needs to be delayed until the next release. Whereas in this CD approach the next
release could be on the same day or in the same week, leading to small changes of production
code. This also leads to a state called perpetual development where the code is always under
continuous development and there is no stable release version for a particular product.

Due to this new release paradigm, there is a lot of extra information generated. The live
performance of the application, click-streams from the user interface of the app, error and
warning logs, infrastructure related data etc. are produced. There are existing APM tools that
collect this data and generate information out of it. Nevertheless, how this information can be
made effective to the software developers or cloud operators in their daily routine is a topic that
is not discussed very often.

2.1.2 Scalability and Elasticity in Cloud

Some of the monitoring metrics collected include the CPU usage, response time of the request,
number of instances the application is hosted on, number of requests each instance serves during
a particular time period, error logs of the request etc. While these metrics focus mainly at the
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Figure 2: Continuous delivery in cloud computing [1]

infrastructure level, the logs instrumented into the application are also collected. We use these
metrics to focus on main challenges of cloud computing: scalability and elasticity of cloud
applications [16].

Scalability is the ability to increase or decrease the resources of an instance or the number
of instances so that the changing demand of the incoming requests can be met. The platform
related log data collected are utilized to perform scaling. Scaling is of two types: horizontal and
vertical scaling. While horizontal scaling focuses on increasing the number of instances, vertical
scaling implies increasing the resources of each instance.

Scalability is one of the major advantages of cloud computing. Compared to the legacy soft-
ware applications, cloud computing offers special features of elasticity and scalability. Hence
customers can scale their infrastructure/application instances whenever necessary. Scaling can
occur at both the platform level and the infrastructure level. While scaling at both levels proves
to be important, these two are quite different from each another.

Infrastructure scaling involves adding or removing virtual machines or server nodes whereas
platform scaling involves adding or removing additional instances of the application itself, and
increasing or decreasing the memory or disk capacity of each instance. It is certainly important
to have both infrastructure and application scaling when a PaaS is considered. For enterprise IT
services, it becomes quite important to evaluate if the application can also scale seamlessly. It
may not be sufficient if the infrastructure scales while the application does not [17].
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Figure 3: Scaling at two different levels: Platform versus Infrastructure

Figure 3 depicts this distinction between platform and infrastructure scaling. It displays multi-
ple virtual machines at the infrastructure layer and multiple application instances at the platform
layer. Depending on implementations, sometimes application scaling could demand scaling the
infrastructure as well [18]. This needs to be handled by the PaaS.

2.2 Feedback Driven Development

By analyzing any cloud application’s logs, a huge amount of information is gathered. The logs
can be broadly classified into application level logs and infrastructure level logs. This data
can be useful to both the developers and operators. Infrastructure logs provide details such
as number of instances, memory, CPU, disk utilization, and which instance serves a particular
request etc. By making this kind of data visible to the developers, they can tweak the application
development process, as they have access to the run time information. At the same time, cloud
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operators also benefit by having access to relevant business metrics. They can use this to manage
the instances more efficiently.

Collecting these run-time data, aggregating them into useful feedback, and feeding them
back into the development process of an application can create a useful impact in the future
deployment of the application. This process is known as Feedback Driven Development. FDD
can be classified into 2 types: Analytic FDD and Predictive FDD [3].

• Analytic Feedback Driven Development: Analytic FDD uses the run time data from previous
deployments, which is brought directly into the developer’s environment. It provides a
mapping between the log data collected and the source code artifacts. This helps the de-
velopers to understand how run-time metrics directly impact the source code. Developers
can utilize this to alter and optimize the code based on real time user behavior. In practice,
Analytic FDD deals with visualizing run time operations data and how it is being mapped
to code artifacts.

• Predictive Feedback Driven Development: Predictive FDD utilizes run-time feedback to warn
the developers about effects of current code changes even before the updated source code
is deployed. Predictive FDD is combined with static code analysis to give better predictions
regarding a code change.

2.3 Cloud Monitoring

As cloud computing is gaining popularity, the need for cloud monitoring is becoming increas-
ingly important to both the cloud providers and the cloud consumers. At the cloud provider
side, cloud monitoring is the key principle behind which the actual controlling of hardware
takes place. It enables them to scale the infrastructure, if necessary. Cloud consumers are the
users of the cloud. Cloud monitoring enables consumers to check the availability, QoS etc. of the
applications. The consumers can verify any SLA violations by comparing the Key Performance
Indicator(KPI) parameters provided by cloud monitoring.

Aceto et al. [4] explain in detail about the need for cloud monitoring listing the basic concepts
involved in monitoring, the properties that need to be maintained for monitoring, and finally
also lists down the open issues with respect to cloud monitoring. These are summarized in
Figure 4. The basic concepts include the layers such as network hardware etc., and some of the
properties were discussed in section 2.1. The need for monitoring mostly focuses on capacity
planning, infrastructure adaptation and metering for billing purposes.

Cloud monitoring platforms are those tools which are provided by the cloud provider. There
are also third party vendors providing web services that can be used to monitor cloud appli-
cations and these are called cloud monitoring services. Some examples of cloud monitoring
platforms and services are CloudWatch [10], AzureWatch [19] , NewRelic [11] etc. Table 2.3
provides a list of cloud monitoring platforms and services. Amazon CloudWatch provides users
the monitored information for 2 weeks. Users are allowed to plot these information, set thresh-
olds, alerts etc and these alerts can be used to perform any substantial action such as sending
an email or even in auto-scaling [20]. Auto-scaling is explored in detail in the next section.
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Figure 4: Cloud monitoring [4]

Cloud Monitoring Platforms Cloud Monitoring Services
CloudWatch [10] New Relic [11]
Nimsoft [21] Cloudyn [22]
AzureWatch [19] Up.time [23]
Nagios [24] CloudSleuth [25]
Nimbus [26] Cloudstone
GroundWork [27] Boundary [28]
LogicMonitor [29] Cloudfloor [30]
CloudKick [31] CloudClimate [32]
Monitis [33] CloudHarmony [34]

Table 1: Cloud monitoring platforms and services

Some other cloud monitoring platforms such as Nimsoft monitoring solution [21] provide a
unified monitoring dashboard to view infrastructures provided by Salesforce, Rackspace, Google
or Amazon. Nagios [24] is a popular open source cloud monitoring platform that provides
monitoring of virtual machines and storage (Amazon EC2 and S3). It also supports OpenStack
[35], an open source cloud IaaS. New Relic [11] is a web-based monitoring service that helps
to monitor the application infrastructure and performance, adhering to timeliness, resilience,
availability and accuracy. Bruneo et al. propose a 3D-Cloud Monitoring framework called the
Ceiloesper framework, which combines monitoring in multiple layers with real time data and it
also performs the data analysis for multiple management actions [14]. It is based on CEP and
uses the Esper CEP engine.
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2.4 Auto-scaling

Scaling of cloud infrastructure means adapting the current infrastructure depending on the
demand and usage. It is of two types: horizontal and vertical. Horizontal scaling is a method-
ology of adding or removing machines whereas vertical scaling is increasing or decreasing the
resources such as CPU/Memory/Disk to existing machines.

Auto-scaling is a process where the cloud platform adapts itself by increasing or shutting down
the number of instances on which the application is currently deployed depending on the current
load. For enterprises running their applications in cloud, auto-scaling could lead to saving costs
due to the pay-per-use model of the cloud [8]. Auto-scaling also improves the efficieny of
applications. Bunch et al. mention that auto-scaling improves the instance utilization of the
open source AppScale PaaS by 91% and it also brings down the average time taken to serve the
requests [36]. Auto-scalers can be broadly classified as the following:

• Reactive Auto-scaling: Auto-scaling as provided by most of the cloud providers such as
AWS, Microsoft Azure, IBM Bluemix etc. are reactive. It is achieved by monitoring relevant
metrics. Whenever a certain metric increases or decreases beyond a particular predefined
threshold, additional instances are added or removed. This method which is more of a
rule-based mechanism is a reactive auto-scaling method. This is easier to be implemented
as it involves monitoring metrics, and framing rules and policies for scaling.

Seelam et al. explain the rule based reactive autoscaler of IBM’s Bluemix PaaS, which is
known as the Polyglot application [37]. The Polyglot autoscaler allows application devel-
opers to set thresholds based on which instances need to be added (scale-out) or removed
(scale-in). These threshold values can be parameters such as CPU Utilization, memory and
heap usage. Polyglot consists of four components: agents which collect the performance
information, a monitoring service which continuously monitors the health of the cloud
application, a scaling service which makes the decision of whether scaling needs to be
performed or not, and a persistence service to keep track of the enactment points (points
where the application is scaled in time). While reactive scaling serves in most scenarios,
the question arises whether it is capable to handle bursty traffic.

• Predictive Auto-scaling: Predictive auto-scaling comes handy to handle bursty workloads.
Bursty traffic is a situation where a sudden unexpected number of users access the appli-
cation, which maybe triggered by a social media campaign. By analyzing the historic time
series data, it may be possible to predict the workload at a future time, thereby enabling
predictive auto-scaling. The effectiveness of this method depends on the efficiency of the
workload prediction.

Biswas et al. [38] introduce a predictive auto scaling technique that uses a machine learn-
ing engine to make predictions based on a deadline driven algorithm for predicting the
future state of the system. Netflix [39, 40] describes a predictive auto-scaling tool, Scyer,
used by Netflix to provision the correct number of AWS [7] instances. This is different
from the AAS [20], which is a reactive one. Scryer’s prediction engine is able to provision
the resources based on two prediction algorithms to predict the workload. The prediction
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algorithms implemented are augmented linear regression based algorithm and fast fourier
transformation based algorithm.

• Hybrid Auto-scaling: Hybrid auto-scaling is a combination of both the reactive and
predictive approach. As explained by Netflix [39], Scryer tool works in co-ordination with
the AAS for more efficient auto-scaling. Moore et al. [41] describe the architecture and
implementation of platform insights, which is another hybrid auto-scaler that employs a
reactive rule-based and a predictive model-based approach in a coordinated manner.

Design and implementation of auto-scalers face challenges as well. Lorido-Botran et al. explain
the following problems that auto-scalers face and how they can be solved [42]:

Under Provisioning: The application is hosted on lesser infrastructure than that is necessary
to process all the incoming requests. Due to SLAs, it takes a while for it to reach up to the
required amount of infrastructure. This can also lead to SLA violations.

Over Provisioning: There is no SLA violations in this scenario. However the actual amount of
resources is greater than the required amount of resources and hence the customer could
be paying extra cost that his actual usage.

Oscillation: When there is an oscillation between under provisioning and over provisioning it
causes an undesirable and unstable state.

MAPE loop is a solution proposed to solve the problems listed above [42]. MAPE stands
for Monitor, Analyze, Plan and Execute. The necessary monitoring metrics are collected and
analyzed to decide on the type of auto-scaling: reactive/predictive/hybrid. The planning phase
is done on how to actually perform the scaling: horizontal/vertical. Finally the actual scaling is
performed based on SLA configurations.

2.5 Data Modeling

Correlation and covariance indicate how closely two variables are related to each other. Cor-
relation may be either positive or negative as shown in Figure 5 and Figure 6 respectively. If
variable Y increases proportionately when variable X is increased by a unit, it is known as pos-
itive correlation. On the other hand if the variable Y decreases proportionately when variable
X is increased it is a negative correlation. If all the points are centered around the straight
line: Y = X, then X and Y are said to be positively correlated. Whereas if all the points are
centered around a line Y = -X, then X and Y are said to be inversely correlated. If all the points
are scattered throughout then there is no correlation between variables X and Y. This can be
explained graphically as shown in Figure 7. If X i and Yi are sample data for the two variables
under consideration then correlation can be calculated as: Correlat ion, rx y = Sx y/SxSy where
Sx = sample standard deviation of variable X, Sy = sample standard deviation of variable Y and
Sx y is the sample covariance of the variables X and Y [43].
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Figure 5: Positive correlation

Figure 6: Negative correlation

Figure 7: No correlation
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Figure 8: System represented by State Space Model

So far only a single input variable, X and a single output variable, Y, has been considered.
However in reality most of the systems tend to be multiple-input multiple-output (MIMO) sys-
tems rather than the single-input single-output (SISO) system. The data that is dealt with in
real world does not contain just 2 attributes. Most of the real world scenarios involve a mini-
mum of 5 to 6 dimensions and depending on the applications this may go as high as 20 or even
more [44, 45]. Hence it is important to explore multivariate correlation models: state space
models, and polynomial models [46–48].

2.5.1 State Space Models

State space model represents a system by a set of first order differential equations and state
variables. The output Y(t) of a system at time, t, can be predicted for any time t > t0, where t0
is an initial time, provided that the input and output of the system at time t0 and a minimum
set of variables x i(t) where i = 1 to n, are known. In this case, n is the order of the state space
model [46].

Figure 8 shows a system described by a state space model. The vector u1, u2, u3,...,ui are the
inputs while the output vector is y1, y2,....,yk. By knowing the inputs and outputs at time t0
the state variables: x1, x2, x3,....,xn are first measured. Then it becomes possible to predict the
output at any future time, t by knowing the inputs at that time and the measured state variables.

In state space modeling, the time derivative of the state variables are represented as a func-
tion of the state variable, and inputs, d x/d t = f (x , u, t). Considering a LTI system, the state
equation can be written as [46]:

d x/d t = Ax + Bu

where A and B are matrices with constant coefficients that weigh the system’s state variable and
inputs respectively. Similarly the output equation can be written as [46]:

y = C x + Du

where C and D are matrices with constant coefficients that weight the system’s state variables
and inputs respectively. There are several physical systems where the D matrix is found to be
a null matrix thereby reducing the output equation to y = C x , where the output depends on a
weighted combination of the state variables.
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2.5.2 Polynomial Models

Some physical systems do not always adhere to linear equations. Hence to model these type of
systems, polynomial model are considered. Additionally there could be systems that depend on
values of previous inputs and outputs. Based on these, the following four polynomial models
are considered [47,48]:

1. ARX Model: The ARX model to evaluate the output is based on auto-regression. Auto
regressive model is a model whose current output depends on the past input and output
values. The generic notion to denote auto-regressive model of order p, AR(p) for a variable
X is:

X t = c +
p
∑

i=1

ρiX t−i + e(t)

where c and ρi are constants and e(t) is the noise. Considering auto regression and the
inputs, ARX model can be mathematically described as:

A(z)y(t) = B(z)u(t − n) + e(t)

where y(t) is the output, u(t) is the input, and e(t) is the noise/error measured in the
output. A(z) and B(z) are polynomials of the specified order with respect to the backward
shift operator z−1. For example, z−nu(k) = u(k− n) [48].

2. ARMAX Model: Unlike the ARX model, in ARMAX, the stochastic dynamics are considered.
Therefore this model handles a system where there is a domination of noise. ARMAX
models are better for systems with more disturbances. In general, the moving average
model of order q, MA(q) is represented in the below notation:

X t = e(t) +
q
∑

i=1

θie(t − i)

where θi are constants and e(t) and e(t-i) are the noise/errors. The notation for the auto-
regressive moving average(ARMA) model is as below:

X t = c + e(t) +
p
∑

i=1

ρiX t−i +
q
∑

i=1

θie(t − i)

This model includes both AR(p) and MA(q) models. Based on these the following mathe-
matical equation for the ARMAX model can be written as:

A(z)y(t) = B(z)u(t − n) + c(z)e(t)

where, y(t) is the output, u(t)is the input, and e(t) is the noise. A(z), B(z) and C(z) are
polynomials of specified orders with respect to the backward shift operator z−1 [48].
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3. Output-Error Model: The notation for the Output Error model is as below:

y(t) = [B(z)/F(z)]u(t − n) + e(t)

where, y(t) is the output, u(t)is the input, and e(t) is the noise. B(z) and F(z) are polyno-
mials of specified orders with respect to the backward shift operator Z−1 [48].

4. Box-Jenkins Model: The notation for the Box Jenkins model is as below:

y(t) = [B(z)/F(z)]u(t − n) + [C(z)/D(z)]e(t)

where, y(t) is the output, u(t)is the input, and e(t) is the noise. B(z), F(z), C(z) and D(z)
are polynomials of specified orders with respect to the backward shift operator Z−1 [49].

2.6 Performance analysis using source code history in evolving software

Software evolution is defined as the change of characteristics of a software in time. CD has led to
continuously evolving software. This means frequent code changes occur and this could cause
performance regressions. Performance of a software is quite important and hence evaluating
performance regressions during code changes becomes a necessity. A performance regression
can be defined as a state when the application under consideration behaves worse in a new
code deployment compared to its previous deployment. In order to identify the root cause
of regressions, the source code has to be analyzed, especially those parts that were added/re-
moved/changed in the new deployment. This is called source code mining. In this section, two
source code mining tools are discussed: PerfImpact [5] and LITO [6].

1. PerfImpact: PerfImapct identifies the performance regressions and recommends potential
code changes that has led to the performance degradation. PerfImpact achieves this as a
two step-process:

• Identification of inputs that cause the performance regression:
PerfImpact defines a fitness function that determines the inputs which cause the delay
in execution of a newer code deployment Vi+1 compared to its previous deployment
Vi. The fitness function makes use of genetic algorithms to achieve this.

• Mining execution traces to identify code changes that lead to performance re-
gressions:
PerfImpact also has a mining function, which identifies those methods that took a
longer execution time in Vi+1 compared to Vi. These methods are tagged as poten-
tially problematic methods. Between the two deployments there could be several
code changes/commits. Each code change is ranked based on the number of po-
tentially problematic methods involved. The code changes with higher number of
problematic methods are ranked higher and considered as the possible root cause for
the performance regression.

PerfImpact was evaluated on two open source web applications: JPetStore [50] and Agile-
fant [51]. Figure 9 shows the source code changes in two versions of Agilefant. Agilefant
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Figure 9: Source code changes of two versions in Agilefant [5]

Source Code Changes R I R/I Total
1 Method call additions 23 0 1 24 (29%)
2 Method call swaps 15 9 0 24 (29%)
3 Method call deletion 0 14 0 14 (17%)
4 Complete method change 6 0 3 9 (11%)
5 Loop addition 5 0 0 5 (6%)
6 Change object field value 2 0 0 2 (2%)
7 Conditional block addition 0 2 0 2 (2%)
8 Changing condition expression 0 2 0 2 (2%)
9 Change method call scope 1 0 0 1 (1%)
10 Changing method parameter 0 1 0 1 (1%)

Total 52 28 4 84 (100%)

Table 2: Code Changes that caused maximum performance variations [6]

is a web application that is a lean transformation tool to execute changes faster. The evalu-
ation shows that the inputs which cause performance regressions are identified efficiently.
PerfImpact also lists the potentially harmful code changes that can be used further in code
inspectors and root cause analysis.

2. LITO, a horizontal profiling technique: Software profiling is a type of program analysis
that estimates the space and time complexity of a software. LITO uses horizontal profil-
ing, which is a sampling technique to identify source code versions that cause performance
regressions [6]. LITO is a cost model to determine if a code commit has caused perfor-
mance regressions based on sampling the execution of versions. This approach resolves
the following research questions (RQs) as below:

• RQ-1: Is there a set of specific methods which will cause performance variations when
the source code of these methods are modified? Sandoval et al. state that this is not
really true [6]. This is in contrast to PerfImpact. This approach was tested on 17 open
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source projects and the results showed that the methods, which cause performance
variations before, not necessarily contributed to the performance variations in the
newer versions.

• RQ-2 What are the recurring code changes that affect the performance of an evolving
software? The major code changes the caused performance variations are method call
addition, method call deletion, method call swap, complete method call change, and
loop addition as compared to the other code changes listed in Table 1 [6].

2.7 Summary of State of the Art

This chapter briefly described the important topics relevant for this thesis. It briefed about
FDD and importance of scalability in cloud and described the differences of scaling in PaaS and
IaaS. It also provided details of existing monitoring frameworks. Based on this, a new system
is proposed to identify relevant cloud monitoring metrics that can be used to automatically
perform scaling at the platform level. The metrics are collected and modeled to find a suitable
correlation model. State space models and polynomial models are estimated for the collected
metrics.

The two directions discussed in this chapter where cloud monitoring proves to be extremely
useful are auto-scaling and root-cause-identification of performance issues using source code his-
tory. In this thesis, we explore further in the direction of auto-scaling and propose a new
monitoring and scaling framework that can be used in any PaaS. The collected metrics are
further modelled to derive a suitable correlation model between the metrics.
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3 Design and Architecture

In this chapter, we explain the overall architectural design and the three major components
of the proposed solution, which are cloud monitoring, auto-scaling, and data modeling. Under
cloud monitoring we discuss the choice of the metrics collected and how the metric collection is
performed and persisted. Under auto-scaling, we describe about how the auto-scaler leverages
the monitored data to make the relevant scaling decisions. We then model the persisted data to
find a suitable correlation between the collected metrics and describe this process under data
modeling.

First, we deploy a sample application to the cloud and monitor it continuously. We utilize the
monitoring metrics of the application for data modeling. Based on the monitoring service, we
design an auto-scaler. The auto-scaler aids the applications hosted in the cloud to seamlessly
scale-out and scale-in depending on several parameters. The cloud application monitoring has
paved way for several adaptations both in terms of application (source code changes) and the
infrastructure. As mentioned about FDD in Chapter 2, application level adaptation focuses
on root cause identification and source code changes. In this design, we efficiently utilize the
monitoring metrics to perform infrastructure adaptation. This design focuses in deriving suitable
enactment points where necessary scaling decisions are taken.

3.1 System Architecture

The overall architecture of the proposed system is depicted in Figure 10. The cloud infrastruc-
ture layer is present at the bottom layer and the platform layer above the infrastructure. In this
thesis, openstack infrastructure and Cloud Foundry(CF) platform are used and an application is
hosted in the cloud. The platform provides APIs to collect the application logs, infrastructure
logs and the application usage information. This data is accessible in the form of logs or REST
APIs. The CF API can be accessed using REST calls [52].

As shown in the Figure 10, two of the components named monitoring service and scaling
service are implemented as services that are provided by the platform. The monitoring ser-
vice collects the information from logs and API, parses them and persists the information in a
database. The scaling service also makes use of periodic monitoring data to make the scaling
decisions. The load generator is used to generate load on the application to analyze the be-
havior of monitoring metrics with varying load. A load generator is used to simulate the cloud
application users, whereas in real world this would be the actual users using the application.
Finally, the data modeling component that retrieves the monitoring metrics from the database
and performs data modeling is present.

The three major components of this design: monitoring service, scaling service and data
modeling are discussed in detail in the following sections. The component interaction among
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Figure 10: System design
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Figure 11: Interaction between components of the proposed design
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the three components are depicted in Figure 11. Once the app is deployed to the cloud, the
monitoring component continuously collects logs and metrics. It aggregates the metrics and
persists them in a database. The second component of Figure 11 retrieves the information and
compares it with SLAs to make a decision and perform scaling, when necessary. The third
component, data modeling, collects the data from the database to derive a correlation model.
A load generator is used to generate usage on the app and to monitor the app behavior under
varying load.

3.2 Monitoring Service

The first component of the architecture is the monitoring service. A sample application is de-
ployed to the cloud and it is monitored for certain metrics related to performance and load such
as response times, throughput, CPU utilization etc. We leverage the fact that the application is
on the cloud to get the instantaneous real-time metrics of the application.

Having access to the current run-time metrics could be useful in a wide range of scenarios
that benefit both the development activities such as proactive production bug identification,
bug fixing, and operational activities such as scaling infrastructure. Alerts can also be set-up
to notify the involved stakeholders when a specific metric crosses a predefined threshold value.
The metrics are monitored and persisted to be utilized by the other components. These metrics
include information such as response time of requests, throughput, the CPU % utilization, the
memory % utilization, the disk % utilization etc. Once the application is hosted in the cloud,
the monitoring service is started. The monitoring service collects the required metrics from the
platform log data and the platform APIs. These metrics are aggregated to be consumed by the
other components.

Monitoring happens continuously in time to provide its services and capabilities to other com-
ponents such as scaling and metering. Monitoring is also useful for the cloud providers to meter
the usage of application so that Customers are charged accordingly. The second component,
scaling service, makes use of the monitoring service’s data to make the scaling decisions. This is
depicted in Figure 12.

3.3 Scaling Service

The second component of the design is the scaling service. As mentioned in section 2.1, scal-
ing at the infrastructure level is different from the scaling at the platform level. In this thesis,
the scaling service performs its actions at the platform level, i.e. it adds or removes applica-
tion instances. The cloud application developer can set scaling policies and rules. The scaling
service takes these rules into consideration. It compares the metric values collected by the mon-
itoring component and makes the scaling decision based on the policies. Monitoring happens
continuously and the scaling decision happens once in every specified interval known as the
cool-down-period.

The monitoring data within the last cool-down interval is retrieved from the database to make
the scaling decision as shown in the Figure 13. The cool-down period is to avoid any oscillations
in the metrics due to under-provisioning and over-provisioning of resources. If scaling happens
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Figure 12: Component interaction between monitoring and scaling service

continuously, it may lead to undesirable oscillations. In order to avoid the oscillations, a pre-
defined period called the cool-down-period is defined, which provides some time for the system
to stabilize after scaling occurs.

This auto-scaler performs scaling of application instances. The cloud providers have an
agreement with the cloud consumers regarding certain values such as the minimum and maxi-
mum number of application instances and domain experts can specify minimum and maximum
threshold values of scaling metrics. The values are specified in SLA’s and policies.

The scaling service further aggregates the collected metrics information by the monitoring
service. It utilizes the metrics obtained in the last cool-down period time slot. The final decision
is made depending on the aggregated metric values during the latest cool-down period as shown
in the Figure 13. These values are compared against the values specified in the SLAs/policies.
Both scaling out and scaling in capabilities are performed by this service.

Both the monitoring and scaling components persist the information in a database. This
is utilized by the data modeling component and for future referencing of enactment points.
Enactment points in cloud computing are those points in time where an adaptation at the in-
frastructure/platform occurs. The flow chart of the scaling service is shown in Figure 13.
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Figure 13: Decision process of the auto-scaler
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3.4 Data Modeling

The third part of the design focuses on modeling the monitoring data. In this step, load is
generated on the application and the collected monitoring data is used to derive a model. The
model identifies a correlation between the metrics collected. In this scenario, multiple data
dimensions are available and hence multi-variate modeling is considered. The models that are
discussed in section 2.5 are considered for estimation.

Identification of this correlation may be used to predict the future values of some metrics
which proves to be extremely useful to adapt the infrastructure based on predictions of the
model. It also gives rise to newer methods of root cause identification of production issues
using FDD. Mining the large amount of production data is definitely challenging.

The data collected by the monitoring service of the auto-scaler is imported to perform the data
modeling. Data modeling is broadly classified into three phases: data pre-processing, estimation
phase and the validation phase.

3.4.1 Phase 1: Data pre-processing

Preprocessing involves tasks such as removal of outliers or error data, data conversion steps,
choosing specific data range, etc. The dataset is split into estimation data and validation data.
As per the 80-20 rule, the data is first roughly split into two parts. The first portion consists of
about 80% of the data and this data is used for model estimation. The remaining 20% of the
data is used to validate the model. The 80-20 rule is not a standard one and it can be varied
depending on the application, but it is a good decision to start with. Sometimes, better model
accuracy could be obtained by splitting the dataset in a different manner. The total flow of the
data modeling is depicted in Figure 14.

3.4.2 Phase 2: Estimation phase

The second phase of data modeling is known as the estimation phase or the learning phase.
During this phase the training data set is available. The inputs and outputs of the training data
set is used. The system learns the correlation between inputs and outputs. When more data
points are available, better learning is achieved. A modeling tool estimates the best fit of the
data points to a model. The estimation data may not always fit into a linear regression model.
Sometimes, non-linear models need to be considered. In this thesis, State space and Polynomial
models are estimated.

State space model estimation is a simple but powerful technique. The user needs to provide
just one parameter: the model order. Choosing the optimal model order is important. The model
order determines the size of the state variable vector, x i. The model estimation determines
the values of the state variables using the estimation data inputs and outputs. Once the state
variables are determined, the model can estimate the output at anytime later using the inputs
at that time.
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Figure 14: Validating the model
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Polynomial model estimation requires to specify the orders of the polynomials. Depending on
the type of the polynomial model: ARX, ARMAX, Output-Error or Box-Jenkins, the orders of the
corresponding polynomials are specified. During the estimation phase, the coefficients of the
corresponding polynomials are estimated.

3.4.3 Phase 3: Validation phase

The estimated model needs to be validated. It is validated against the validation dataset. The
accuracy of the model is calculated by comparing the output values estimated by the model with
the actual output values of the validation data set. The data modeling process maybe repeated
by using different datasets, by varying parameters such as model orders etc. to derive a model
which is accurate enough. The desired accuracy may vary depending on the application.
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4 System Implementation

This chapter briefs about the implementation of the proposed design in the previous chapter.
The implementation and evaluation is performed on a cloud application hosted in SAP’s HANA
Cloud Platform. This chapter also briefly explains about deploying the application in HCP, im-
plementing the monitoring-scaling framework, and modeling the collected metric information.

4.1 System Footprint

The implementation of the design is on SAP’s HCP [53]. It is very convenient to build new
applications or extend existing applications on top of the HCP. HCP is a PaaS that provides
unique in-memory databases and application services. The HCP platform is built based on
the open source PaaS, CF. CF platform is deployed using the bosh tool on top of OpenStack
infrastructure. Bosh is an open source tool for deployment of CF on top of any IaaS provider. It
is also useful for reverse engineering and distributed systems monitoring.

The loggregator component of CF is responsible for logging. Loggregator collects all the logs
from both the application and the CF system components, which interacts with the application
during execution. These CF logs and API’s are used to collect and aggregate the metrics.

The monitoring and scaling services are developed as a java service. The monitoring data
collected are persisted in the MySQL database. This data is modeled by using MATLAB’s System
Identification Toolbox. Table 4.1 summarizes the system footprint of this implementation.

System Property Details
Cloud Platform Hana Cloud Platform - Cloud Foundry
Cloud Infrastructure OpenStack
Database MySQL
Data Modeling Tool MATLAB System Identification Toolbox
Autoscaler (Monitoring and Scaling services) Java
Sample Cloud App HTML and Java

Table 3: System footprint

4.2 Deployment of Cloud Application

Among the three components of the proposed design, the cloud monitoring is the first com-
ponent. In order to perform cloud application monitoring, a suitable cloud app needs to be
developed and deployed to the cloud. In this implementation, the cloud app is deployed to the
HCP based on CF PaaS, which runs on OpenStack [35] infrastructure. In order to deploy the app,
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the developer logs into CF using correct credentials and API end point, which is the cloud con-
troller URL of the CF instance. c f login [−aAPI − URL] [−u USERNAM E] [−p PASSWORD].
The app is then deployed to CF using the following command: c f push APP.

The CF push command: c f push [APPNAM E], reads the manifest.yml file of the application
to be deployed. It takes the application name, instances, memory, buildpack, host and several
other optional attributes for the initial deployment of the application from this manifest file.
The manifest file can also be provided as a command line argument if the file name is different
or if it is present in a different location other than the current project directory. This is usually
useful for deploying multiple applications together using a single manifest file. The below lines
shows the contents of a sample manifest.yml file which deploys two applications named spark
and flame with the specified attributes [54].

---

// the below manifest deploys two applications

// apps are in flame and spark directories

// flame and spark are in fireplace

// cf push should be run from fireplace

applications:

- name: spark

memory: 1G

instances: 2

host: flint-99

domain: shared-domain.example.com

path: ./spark/

services:

- mysql-flint-99

- name: flame

memory: 1G

instances: 2

host: burnin-77

domain: shared-domain.example.com

path: ./flame/

services:

- redis-burnin-77

4.3 Cloud Monitoring Metrics

The deployed cloud app is monitored continuously to collect the various dimensions of data
that focuses on infrastructure utilization and application usage. Figure 15 shows an application
deployed on cloud being monitored for usage statistics such as number of user requests and
the response time of those requests. The users access the cloud app through different browsers.
These requests are aggregated to collect the throughput(requests per second) metric. This thesis
aims to collect and correlate the following metrics:

1. Average response time of the requests:
The monitoring service collects all the HTTP requests to the application URL during every
10 second interval. This is collected from CF logs. The logs contain the response time
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Figure 15: Cloud application monitored for usage statistics

information of each of the HTTP request. We aggregate the response time obtained in that
10 second interval and calculate the average response time. The following lines show a
router’s log from which the response time needs to be extracted and aggregated.

016-04-18T15:13:12.32+0200 [RTR/0] OUT

masterthesisdemo-d063995.cfapps.sap.hana.ondemand.com -

[18/04/2016:13:13:12 +0000] "POST /processrequest HTTP/1.1" 200 0 0 "-"

"Java/1.8.0_74" 192.168.0.107:36027 x_forwarded_for:"172.18.74.8,

192.168.0.107" x_forwarded_proto:"https"

vcap_request_id:d70e4b9e-a08f-411d-584e-042e50d737e2

response_time:0.031885594 app_id:55b4a61c-ee3b-484c-86c9-e656e99b2a96

2. Throughput:
From the CF logs, the total number of requests can also be counted. This keeps varying
depending on the user load at that time.

3. Number of instances the application is running on:
The number of application instances that are currently running is retrieved by making a
GET request to the CF API [55].

String url = "https://<cf-target-api>/v2/apps/:guid/stats";

URL obj = new URL(url);
HttpURLConnection con = (HttpURLConnection) obj

.openConnection(proxy);

con.setRequestMethod("GET");

con.setRequestProperty("Authorization", oAuthToken);

In the above code snippet, the authorization token to access the CF API is fetched by
making a call to the cf command: c f oauth − token. The URL is the CF API end point
and the :guid in the URL is the GUID of the application in cloud. It is retrieved from the
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environment variables of the application. The environmental variables is accessed by the
CF command: c f env app− name

4. CPU utilization, memory utilization, and the disk utilization as percentage The CPU,
memory, and disk utilization are fetched from the CF API the same way as the number of
running instances. The URL for this GET request is:

String url = "https://<cloud-foundry-target-api-url>/v2/apps/:guid/summary";

4.4 Auto-scaler implementation

The auto-scaler is implemented as a java application and it consists of two parts: monitoring
service and scaling service. This comprises the first two components of the proposed design.
Monitoring service focuses on collecting the metrics discussed in section 4.3 and scaling service
performs the scaling decisions and the actual scaling. The SLA values and threshold information
are stored in a properties file. Table 4.4 lists the constants set in the properties file.

Property Name Property Value
app_name masterthesisdemo_d063995
min_instances 1
max_instances 7
cool_down_interval 60000
min_cpu_threshold 20.0
max_cpu_threshold 80.0
cf_api cloud_foundry_api_endpoint
cf_username cloudfoundry_username
cf_password *********

Table 4: Properties file of auto-scaler implementation

The autoscaler first fetches this properties file and initializes the values. It consists of the
following 2 services: Monitoring Service and the Scaling Service.

4.4.1 Monitoring Service

The monitoring service continuously keeps collecting all the metrics mentioned in section 4.3.
During every iteration, it performs the following steps:

• Initialize the DataModel object: In this step, the model data object is initialized and
the current timestamp is set. This object contains the following fields: timeStamp, avgRe-
sponseTime, requestsPerSecond, private int noInstances, memory_percent, disk_percent, and
cpu_percent. This serves as the base schema of the dataset that is used for data modeling
later. The current UTC timestamp is set to the timeStamp field.
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• CF Login: The monitoring service logs in to CF using c f login command passing the login
credentials as parameters.

• Get the CF OAuthToken: After logging in, the authorization token is retrieved to access
the CF API information. The c f oauth− token command is used to get the authorization
token. This token is used in the next steps as the authentication to be sent with the GET
requests to access the CF API.

• Get CPU/memory/disk stats: The stats of the application are obtained by sending the
GET request as described in section 4.3.

• Stream the CF logs: In order to get the response time and throughput, the CF Logs are
streamed. The monitoring service creates two threads here: one for writing the logs and
another one for reading the logs. The write thread streams the logs and writes it for
10 seconds. Meanwhile, the read thread reads the logs written in the previous iteration
(previous 10 seconds). The two threads: read thread and write thread run in parallel and
once both are completed the already read file is discarded and the new file written in this
iteration is renamed to be read by the read thread in the next iteration.

In the read thread, the logs are parsed to retrieve the response time information. This
information is collected in an ArrayList and aggregated to get the average response time
and throughput.

• CF Logout: The service logs out using the c f logout command, similar to the cf login. This
does not require any parameters.

• Persist the data model object in MySQL database. As a final step, the model data object
is stored in the MySQL database. A database is created in MySQL named masterthesis. A
table is created under this database called modeldata. The schema of this table is as shown
in Figure 16.

The monitoring service persists the data into this database. A JDBC connection to the
database is established and the data is inserted into the table using the statement

INSERT INTO modeldata VALUES TimeStamp AvgResponseTime RequestsPerSecond

NoInstances Memory_percent Disk_percent Cpu_percent

4.4.2 Scaling Service

Parallel to the monitoring service, the scaling service also runs continuously comparing moni-
toring information with threshold values and SLAs. The scaling service is invoked as soon as the
monitoring begins. The scaling service has a java.util.Timer and this timer schedules a TimerTask
to occur for every cool down period. The scaling decision could be based on any of the parame-
ters: CPU/memory/disk depending on the application and the metrics. In this implementation,
a CPU intensive application is considered and hence CPU utilization is chosen as the decision
metric. We can also use a combination of these metrics. The TimerTask thread aggregates the

39



Figure 16: Screen shot of the database table that stores the monitoring data

average CPU utilization values in the last cool down period. These steps are shown in the below
code snippet:

static Timer timer_scale = new Timer ();
static TimerTask autoscaler = new TimerTask(){

@Override

public void run(){
calculateAvgCPU();

}

};

public static void invokeAutoScaler(){
timer_scale.schedule(autoscaler, 60000,

Constants.cool_down_interval);

}

double cpu_avg = MonitoringService.cpu.parallelStream().mapToDouble
(e -> e.doubleValue()).average().getAsDouble();

CFCalls cf_call = new CFCalls();
if(cpu_avg > Constants.max_cpu_threshold){
cf_call.cfLogin(Constants.cf_api, Constants.cf_username,

Constants.cf_password);

cf_call.getOAuthToken();

cf_call.cfHorizontalScaling(

cf_call.getCurrentRunningInstances()+1,

Constants.app_name);

cf_call.cfLogout();

}
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else if (cpu_avg < Constants.min_cpu_threshold){
cf_call.cfLogin(Constants.cf_api, Constants.cf_username,

Constants.cf_password);

cf_call.getOAuthToken();

cf_call.cfHorizontalScaling(

cf_call.getCurrentRunningInstances()-1,

Constants.app_name);

cf_call.cfLogout();

}

The actual scaling task involves making calls to the c f scale command. The CF scale command
takes the number of instances or memory or disk values as parameters depending on the type of
scaling (horizontal or vertical). In the below code snippet, we can see the number of instances(-
i) passed as a parameter:

public void cfHorizontalScaling(int noInstances, String appName){
if(!(noInstances >= Constants.min_instances &&

noInstances <= Constants.max_instances)){

return;
}

String[] cf_scale = {"cf" , "scale", appName, "-i" ,

Integer.toString(noInstances) };

Process scale = Runtime.getRuntime().exec(cf_scale);

}

4.5 Data Modeling

Data modeling is the final component of the proposed design. The MATLAB System Identifica-
tion Toolbox is used to perform data modeling to find a suitable correlation model. The data
from MySQL database table is exported to the MATLAB workspace. The input vectors and output
vectors are combined from the datasets as shown below:

input = [requestsPerSecond, noInstances, cpu_percent, memory_percent,

disk_percent];

output = [avgResponseTime];

The input and output vectors are imported into the Sytem Identification Toolbox as shown in
Figure 17. The data is now ready to be split into estimation Data and validation data. To do this,
the select range option underneath preprocess combo box has to be clicked as shown in Figure
18. Once the data is split, the datasets are dragged to the corresponding working data area and
validation area. Then the model estimation needs to be performed. The model that needs to be
estimated for the data needs to be chosen underneath the estimate box. The estimated models
include state space models, and polynomial models: ARX and ARMAX models.
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Figure 17: Importing data into System Identification Toolbox

Figure 18: Splitting the data into estimation and validation datasets
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Figure 19: State space modeling

Figure 20: ARX model Figure 21: ARMAX model

• State space model: The state space mode estimation is shown in Figure 19. It provides
options to specify the model order or to specify a range of orders and the system would
suggest which model order would suit best for this scenario. The model order will de-
termine the size of the state variable vector which in turn will determine the output at a
certain time in the future, given the inputs at that time.

43



• ARX and ARMAX models: Following the state space model estimation polynomial model
estimation is done. In this context, ARX and ARMAX models are considered for estimation.
In ARX, the orders of the polynomials A and B (na and nb) and the error co-efficients,
nk, are specified. This is shown in Figure 20. For ARMAX modeling, the order of the
polynomials A, B and C (na, nb and nc) and the error co-efficients are specified. Figure 21
shows this in the System Identification Toolbox.
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5 Evaluation

In this chapter, the evaluation of our implementation is discussed. A sample guest book
application is deployed to HCP, and load is generated on the app. The metric collection by
monitoring service and automatic scaling of instances are tested and verified. This forms the
first part of the contribution of the thesis. The second part focuses on deriving a correlation
model between the metrics. The collected metric information is used to evaluate the correlation
model.

5.1 Sample application under consideration

We consider a sample web application hosted in the HCP. This is a guest book application
which provides a web interface for the users to enter the data as shown in Figure 22. For

Figure 22: User interface of the guest book application

every user who posts the data, a background calculation of fibonacci series up to any random
number between 0 and 38 is performed. This is done purposely to increase the CPU usage. The
source code of the recursive fibonacci series calculation is shown below. This code runs with an
exponential complexity runtime and its time complexity is represented as O(2n). The fibonacci
series is calculated by recursion without memoization to ensure an exponential complexity,
thereby making the application is a CPU intensive one.

public void ComputeRandomFibonacchi(){
int random_number = (int) (Math.random() * 38);

long lStartTime = new Date().getTime();
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for(int i=1; i<=random_number; i++){
fibonacciRecusion(i);

}

long lEndTime = new Date().getTime();
long difference = lEndTime - lStartTime;

}

public long fibonacciRecusion(int number){
if(number == 1 || number == 2){
return 1;

}

return fibonacciRecusion(number-1)
+ fibonacciRecusion(number -2);

}

Figure 23: Manifest.yml file of the guest book application

The manifest file of this application is shown in Figure 23. The app is deployed to CF using
the following command: c f push master thesisdemo_d063995. The cf push command reads
the attributes from the manifest.yml file. So, the app is created in the cloud with the name
masterthesisdemo_d063995, and the war file specified in the path is deployed. The values
specified in the manifest are used during the initial deployment. In this scenario, 1 instance of
the application is started with a memory of 256 MB as shown in Figure 23.

5.2 Load generation on the sample application

We use apache JMeter to generete load on our application. A test plan is created in JMeter and
it is configured to contain 5 thread groups. Each thread group is set to run one after the other
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(serial execution). The first thread group generates 100 users simultaneously over a ramp up
period of 50 seconds. Each of the thread groups are set to loop for a loop counter of 3600. In the
following thread groups, the number of threads (users) is increased to 200, 400, 600, 800 and
1000 respectively. The JMeter test plan configuration is shown in Figure 24. Before executing
the test plan, the auto-scaling framework is started. This means the application is now being
monitored by the monitoring service and the scaling service is also activated. Now the test plan
is executed to see if our application performs monitoring and scaling consistently.

Figure 24: JMeter test plan configuration

5.3 Scaling out and scaling in of the the application instances

In this section, the results of scaling service is demonstrated. As and when the load increases,
it can be noted that the scaling service creates and adds more instances of the application.
This is because the CPU utilization of the instances go up as our sample application under
consideration is a CPU intensive one. This can be verified in the command line console as well.
Figure 25 shows the statistics of application instances in the console. We notice that the CPU
column shows a huge spike in the percentage utilization of CPU. The scaling out happens until
the values falls below the threshold CPU value. For this evaluation, the maximum CPU threshold
was set to 80%, which can be verified in Figure 26.

Figure 27 shows the graph indicating the scaling action performed. The graph on top, y1
denotes the load (requests per second). The graph beneath, u1 shows the number of application
instances. The x axis indicates the time. In this scenario, about 2000 records were collected and
the x axis indicates these relative values. From this graph, it can be inferred that as the load
increases, the number of instances also increase up to 7 and then once the load generation is
turned off the number of instances reduces back to 1. For this evaluation, 7 is the maximum
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number of instances, and 1 is the minimum number of instances configured as an SLA. The SLA
settings screen shot is shown in Figure 26. This depicts the scaling out and scaling in procedures.

Figure 25: Stats of the application instances in the command line interface

Figure 26: Properties file where the default SLAs/policies are stored

Figure 27: Graph depicting the correlation between throughput and number of application
instances
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5.4 Persistence of data in MySQL database

In this section, the results of persistence of the monitoring and scaling services are demon-
strated. It continuously collects the information and persists it into the MySQL database. Figure
28 shows the data stored in the MySql DB. The dimensions persisted are time stamp of the
record, average response time, requests per second, number of instances, memory utilization
as percentage, disk utilization as percentage, and CPU % utilization. Depending on the type
of scaling and the type of sample application, scaling may be reflected in number of instances
(horizontal scaling) or memory/disk (vertical scaling).

As our example application involves horizontal scaling, whenever scaling happens it will be
reflected in the number of instances. The screen shot in Figure 28 shows the number of instances
gradually increasing from 1 until 7 which is the minimum and maximum instances set during
this evaluation. This can be verified in Figure 26, which shows the screen shot of the properties
file containing the SLA settings.

Figure 28: MySQL workbench showing the top rows of the table modeldata
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5.5 Modeling the collected data

The dataset from the MySql database is exported into the MATLAB workspace. Average response
time is estimated to see the performance improvement of the application using auto-scaler. The
input and output datasets are now imported to the MATLAB System Identification Toolbox with
the name EvalDataSet. The structure of the input and output datasets are as below:

input = [requestsPerSecond, noInstances, cpu_percent, memory_percent,

disk_percent];

output = [avgResponseTime];

Figure 30 depicts the inputs and output graphically. It contains six graphs where the first one
represents the output dimension and the following five graphs represent the input dimensions.
The X-axis is time on all the graphs and the Y-axis indicates average response time, requests per
second, number of instances, CPU % utilization, memory % utilization, and disk % utilization
from the top to bottom respectively.

This dataset is now split into estimation and validation datasets. The complete dataSet, Eval-
DataSet, is dragged into the working data area. Select range option is used to split the entire
dataset into the estimation and validation datasets: EvalDataSetEstimation and EvalDataSetVal-
idation.

The range selection process is shown in Figure 29 . The dataset is split into 80% and 20%
respectively. The 80% data is shown in Figure 31, which represents the estimation dataset and
the 20% data is shown in Figure 32, which represents the validation dataset.

Figure 29: Select ranges from the imported dataset: EvalDataSet
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Figure 30: Graph showing the output Y1: average response time and the inputs U1, U2, U3, U4
and U5: requests per second, number of instances, CPU, memory and disk utilization
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Figure 31: Choosing 80% data as estimation data: EvalDataSetEstimation

Figure 32: Choosing 20% data as validation data: EvalDataSetValidation

Now the split data sets need to be dragged into the working data area and validation data
area respectively. This is depicted in Figure 33. The green dataset that represents the estimation
data is copied to working area box and the red dataset that represents the validation dataset is
copied to the validation data box.
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Figure 33: Working data and validation data area

The next step is to estimate the models for above datasets. Estimation takes place as described
in section 4.5. The state space model estimation is performed by giving the input model order
value as 3. This can be visualized in Figure 19.

Following the state space model estimation, polynomial models are estimated. In this context,
ARX and ARMAX models are estimated. In ARX, the orders of the polynomials A and B (na and
nb) and the error co-efficients, nk are specified with values:

[na nb nk] = [4, [4 4 4 4 4 ], [1 1 1 1 1]]

For ARMAX modeling, the order of the polynomials A, B and C (na, nb and nc) and the error
co-efficients with values are specified with values:

[na nb nc nk] = [4, [4 4 4 4 4], 2, [1 1 1 1 1]]

ARX and ARMAX estimation are depicted in Figure 20 and Figure 21 respectively.

The models estimated are validated against the validation dataset. The model output check-
box is checked to see the the accuracy of each model. It shows the best fitting models listed in
order. This is depicted in Figure 34.
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Figure 34: Model output with the best fits listed

5.6 Comparison of the response times with and without the auto-scaler

The previous section shows the models for a dataset which was generated with the auto-scaler.
In this section, charts, displaying the response time fluctuations for a small load generation
without an auto-scaler and with an auto-scaler, are analyzed. Figure 35 and Figure 36 shows
this clearly. In the first graph, it can be inferred that the response time peaks as high as 750
milliseconds whereas in the next graph it can be noticed that the maximum response times are
reduced to around 100 milliseconds for almost the same load. In fact, the second case(with the
auto-scaler) has slightly additional load compared to the previous scenario.

Figure 35: Response time versus load without an auto-scaler

54



Figure 36: Response time versus load with an auto-scaler
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6 Conclusion

This chapter concludes the thesis by providing a short summary of the contributions of this
thesis. It also lists some of the challenges and limitations faced during this thesis and provides
some ideas for future work in this direction.

6.1 Contribution of the Thesis

With cloud computing and CD on a significant rise, DevOps gained a lot of popularity. This thesis
performs monitoring of applications hosted on cloud platforms. Cloud monitoring has proved
to be useful especially for cloud developers and cloud operators (DevOps). Developers leverage
this information for FDD and root cause identification. Operators depend on this information
for provisioning the right amount of infrastructure.

This thesis proceeds in the operations side with the idea of how to run operations with soft-
ware engineering ideas thereby reducing downtime/outages etc. It navigates from FDD to feed-
back driven operations. The relevant run-time metrics are chosen to design an auto-scaling
system. This is slightly different from many available infrastructure auto-scaling mechanisms.
This is a platform-level auto-scaler which increases or decreases the number of running applica-
tion instances depending on the threshold parameters. Sometimes, adding infrastructure may
not solve the problem whereas what is essential could be the efficient utilization of the exist-
ing infrastructure. Cloud platforms need to take this into consideration and provide a Platform
Auto-scaling mechanism. This thesis contributes a platform level Auto-scaler.

The monitoring data collected for making scaling decisions are also modeled to identify the
correlation of the metrics. In this thesis, the average response time is estimated. It is helpful to
forecast the response time which aids in automating the resource provisioning, and configura-
tion management tools.

6.2 Challenges faced and Future work

One of the challenges faced during this implementation is the choice of parameters to design
the auto-scaler. This proves to be quite important as the decisions of auto-scaler is based on
these parameters. The auto-scaler could be designed to work on any metric such as response
time or CPU % utilization. In this implementation, it was designed to scale based on the CPU. A
possible enhancement could be to scale based on any custom metric.

The evaluation is performed with a single application. It could possibly be evaluated with
several other applications. The app considered in this evaluation is a CPU intensive application.
It can be performed on other applications that are CPU, memory, storage, database or data
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(streaming) intensive applications. Considerations to collect larger datasets for modeling is also
important. This may provide different aspects or design considerations to the auto-scaler.

We envision the following research directions. On one side, the rule based auto-scaler can be
enhanced to combine the different metrics on which the scaling decision depends. It can also
be designed to include custom metrics that can be provided by the developers on which scaling
should happen. Additionally the threshold values on which the scaling decisions are made
can be verified to find a better threshold if applicable. This will involve testing the existing
prototype on different types of applications to choose the right combination of metrics and the
right minimum and maximum thresholds.

On the other side, modeling can be improved. A correlation model from the monitored metrics
is derived. Modeling can be enhanced to achieve a better accuracy. In order to do this, larger
monitoring datasets would be required. Additionally, the script can be automated and used
for modeling each application. This way a dynamic model, depending on the application on
which the auto-scaler is run, is derived. Using this dynamic model, predictions of the response
times customized for each application can be provided. These predictions can in turn be used
in making the rule-based auto-scaler a proactive one.
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AAS Amazon Auto-Scaling. 18

APM Application Performance Monitoring. 9, 12

AWS Amazon Web Services. 8, 17, 18

CD Continuous Delivery. 12, 54

CEP Complex Event Processing. 17

CF Cloud Foundry. 33, 34, 36, 37, 44

FDD Feedback Driven Development. 9, 15, 24, 30, 54

GUID Globally Unique Identifier. 36

HCP Hana Cloud Platform. 33, 34, 43

IaaS Infrastructure-as-a-Service. 17, 33

IDE Integrated Development Environment. 9, 10

JDBC Java DataBase Connectivity. 37

LTI Linear Time Invariant. 19

PaaS Platform-as-a-Service. 9, 13, 14, 17, 33, 34

QoS Quality of Service. 15

SaaS Software-as-a-Service. 9

SLA Service Level Agreements. 14, 15

UTC Coordinated Universal Time. 37
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